Let the shortest distance from $(a, 0), a>0$, to the parabola $y^2=4 x$ be 4 . Then the equation of the circle passing through the point $(a, 0)$ and the focus of the parabola, and having its centre on the axis of the parabola is :
If the line $3 x-2 y+12=0$ intersects the parabola $4 y=3 x^2$ at the points $A$ and $B$, then at the vertex of the parabola, the line segment AB subtends an angle equal to
Let $\mathrm{P}(4,4 \sqrt{3})$ be a point on the parabola $y^2=4 \mathrm{a} x$ and PQ be a focal chord of the parabola. If M and N are the foot of perpendiculars drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to :
Let the parabola $y=x^2+\mathrm{p} x-3$, meet the coordinate axes at the points $\mathrm{P}, \mathrm{Q}$ and R . If the circle C with centre at $(-1,-1)$ passes through the points $P, Q$ and $R$, then the area of $\triangle P Q R$ is :