1
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$P$$ be the point on the parabola, $${{y^2} = 8x}$$ which is at a minimum distance from the centre $$C$$ of the circle, $${x^2} + {\left( {y + 6} \right)^2} = 1$$. Then the equation of the circle, passing through $$C$$ and having its centre at $$P$$ is:
A
$${{x^2} + {y^2} - {x \over 4} + 2y - 24 = 0}$$
B
$${{x^2} + {y^2} - 4x + 9y + 18 = 0}$$
C
$${{x^2} + {y^2} - 4x + 8y + 12 = 0}$$
D
$${{x^2} + {y^2} - x + 4y - 12 = 0}$$
2
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The normal to the curve, $${x^2} + 2xy - 3{y^2} = 0$$, at $$(1,1)$$
A
meets the curve again in the third quadrant.
B
meets the curve again in the fourth quadrant.
C
does not meet the curve again.
D
meets the curve again in the second quadrant.
3
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$O$$ be the vertex and $$Q$$ be any point on the parabola, $${{x^2} = 8y}$$. If the point $$P$$ divides the line segment $$OQ$$ internally in the ratio $$1:3$$, then locus of $$P$$ is :
A
$${y^2} = 2x$$
B
$${{x^2} = 2y}$$
C
$${{x^2} = y}$$
D
$${y^2} = x$$
4
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1$$, is
A
$${{27 \over 2}}$$
B
$$27$$
C
$${{27 \over 4}}$$
D
$$18$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN