1
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be a non constant twice differentiable function such that $$\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$$. If a real valued function $$f$$ is defined as $$f(x)=\frac{1}{2}[g(x)+g(2-x)]$$, then

A
$$f^{\prime \prime}(x)=0$$ for atleast two $$x$$ in $$(0,2)$$
B
$$f^{\prime}\left(\frac{3}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)=1$$
C
$$f^{\prime \prime}(x)=0$$ for no $$x$$ in $$(0,1)$$
D
$$f^{\prime \prime}(x)=0$$ for exactly one $$x$$ in $$(0,1)$$
2
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x)=\left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^4 x & \sin ^2 2 x \end{array}\right|,$$ then $$\frac{1}{5} f^{\prime}(0)=$$ is equal to :

A
2
B
1
C
0
D
6
3
JEE Main 2024 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { Let } y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1 < x<1 \text {. Then at } x=\frac{1}{2} \text {, the value of } 225\left(y^{\prime}-y^{\prime \prime}\right) \text { is equal to }$$

A
732
B
736
C
742
D
746
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Suppose $$f(x)=\frac{\left(2^x+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^2-x+1\right)}}{\left(7 x^2+3 x+1\right)^3}$$. Then the value of $$f^{\prime}(0)$$ is equal to

A
$$\pi$$
B
$$\sqrt{\pi}$$
C
0
D
$$\frac{\pi}{2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12