1
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y(x)=x^{x},x > 0$$, then $$y''(2)-2y'(2)$$ is equal to

A
$$4(\log_{e}2)^{2}+2$$
B
$$8\log_{e}2-2$$
C
$$4\log_{e}2+2$$
D
$$4(\log_{e}2)^{2}-2$$
2
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = 2x + {\tan ^{ - 1}}x$$ and $$g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]$$. Then

A
there exists $$\widehat x \in [0,3]$$ such that $$f'(\widehat x) < g'(\widehat x)$$
B
there exist $$0 < {x_1} < {x_2} < 3$$ such that $$f(x) < g(x),\forall x \in ({x_1},{x_2})$$
C
$$\min f'(x) = 1 + \max g'(x)$$
D
$$\max f(x) > \max g(x)$$
3
JEE Main 2023 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=f(x)=\sin ^{3}\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)\right)$$. Then, at x = 1,

A
$$2 y^{\prime}+\sqrt{3} \pi^{2} y=0$$
B
$$y^{\prime}+3 \pi^{2} y=0$$
C
$$\sqrt{2} y^{\prime}-3 \pi^{2} y=0$$
D
$$2 y^{\prime}+3 \pi^{2} y=0$$
4
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that

$$f''(x)=g''(x)+6x$$

$$f'(1)=4g'(1)-3=9$$

$$f(2)=3g(2)=12$$.

Then which of the following is NOT true?

A
$$g(-2)-f(-2)=20$$
B
There exists $$x_0\in(1,3/2)$$ such that $$f(x_0)=g(x_0)$$
C
$$|f'(x)-g'(x)| < 6\Rightarrow -1 < x < 1$$
D
If $$-1 < x < 2$$, then $$|f(x)-g(x)| < 8$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12