1
JEE Main 2023 (Online) 25th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y(x) = (1 + x)(1 + {x^2})(1 + {x^4})(1 + {x^8})(1 + {x^{16}})$$. Then $$y' - y''$$ at $$x = - 1$$ is equal to

A
496
B
976
C
464
D
944
2
JEE Main 2023 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x) = {x^3} - {x^2}f'(1) + xf''(2) - f'''(3),x \in \mathbb{R}$$, then

A
$$2f(0) - f(1) + f(3) = f(2)$$
B
$$f(1) + f(2) + f(3) = f(0)$$
C
$$f(3) - f(2) = f(1)$$
D
$$3f(1) + f(2) = f(3)$$
3
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and

$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.

Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :

A
$$\frac{-2 \sqrt{2}}{3}$$
B
$$\frac{2}{3}$$
C
$$\frac{1}{3}$$
D
$$ \frac{-2}{3}$$
4
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$$ at $$x=\frac{\pi}{4}$$ is

A
$$-2 \sqrt{2}$$
B
$$2 \sqrt{2}$$
C
$$-4$$
D
4
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12