Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:
Suppose for a differentiable function $$h, h(0)=0, h(1)=1$$ and $$h^{\prime}(0)=h^{\prime}(1)=2$$. If $$g(x)=h\left(\mathrm{e}^x\right) \mathrm{e}^{h(x)}$$, then $$g^{\prime}(0)$$ is equal to:
$$\text { If } f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0 & , x=0 \end{array}\right. \text {, then }$$
Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to