1
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:

A
54
B
51
C
73
D
62
2
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Suppose for a differentiable function $$h, h(0)=0, h(1)=1$$ and $$h^{\prime}(0)=h^{\prime}(1)=2$$. If $$g(x)=h\left(\mathrm{e}^x\right) \mathrm{e}^{h(x)}$$, then $$g^{\prime}(0)$$ is equal to:

A
4
B
5
C
3
D
8
3
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { If } f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0 & , x=0 \end{array}\right. \text {, then }$$

A
$$f^{\prime \prime}(0)=0$$
B
$$f^{\prime \prime}(0)=1$$
C
$$f^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{24-\pi^2}{2 \pi}$$
D
$$f^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{12-\pi^2}{2 \pi}$$
4
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to

A
$$\frac{5}{2}+\frac{\pi}{8}$$
B
$$\frac{3}{8}+\frac{\pi}{4}$$
C
$$\frac{3}{4}+\frac{\pi}{8}$$
D
$$\frac{3}{2}+\frac{\pi}{4}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12