Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $(\sin x \cos y)(f(2 x+2 y)-f(2 x-2 y))=(\cos x \sin y)(f(2 x+2 y)+f(2 x-2 y))$, for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=\frac{1}{2}$, then the value of $24 f^{\prime \prime}\left(\frac{5 \pi}{3}\right)$ is :
Let $f:(0, \infty) \rightarrow \mathbf{R}$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f^{\prime}(x)=2 x f(x)+3$, with $f(1)=4$. Then $2 f(2)$ is equal to :
If $$\log _e y=3 \sin ^{-1} x$$, then $$(1-x^2) y^{\prime \prime}-x y^{\prime}$$ at $$x=\frac{1}{2}$$ is equal to
Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to: