1
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to

A
$$\frac{5}{2}+\frac{\pi}{8}$$
B
$$\frac{3}{8}+\frac{\pi}{4}$$
C
$$\frac{3}{4}+\frac{\pi}{8}$$
D
$$\frac{3}{2}+\frac{\pi}{4}$$
2
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :

A
$$\frac{1}{2}$$
B
1
C
$$\frac{3}{2}$$
D
2
3
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=x^5+2 \mathrm{e}^{x / 4}$$ for all $$x \in \mathbf{R}$$. Consider a function $$g(x)$$ such that $$(g \circ f)(x)=x$$ for all $$x \in \mathbf{R}$$. Then the value of $$8 g^{\prime}(2)$$ is :

A
4
B
2
C
16
D
8
4
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then

A
$$x f^{\prime}(x)+2024 f(x)=0$$
B
$$x f^{\prime}(x)-2023 f(x)=0$$
C
$$x f^{\prime}(x)-2024 f(x)=0$$
D
$$x f^{\prime}(x)+f(x)=2024$$
JEE Main Subjects
EXAM MAP