1
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to

A
$$\frac{5}{2}+\frac{\pi}{8}$$
B
$$\frac{3}{8}+\frac{\pi}{4}$$
C
$$\frac{3}{4}+\frac{\pi}{8}$$
D
$$\frac{3}{2}+\frac{\pi}{4}$$
2
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :

A
$$\frac{1}{2}$$
B
1
C
$$\frac{3}{2}$$
D
2
3
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=x^5+2 \mathrm{e}^{x / 4}$$ for all $$x \in \mathbf{R}$$. Consider a function $$g(x)$$ such that $$(g \circ f)(x)=x$$ for all $$x \in \mathbf{R}$$. Then the value of $$8 g^{\prime}(2)$$ is :

A
4
B
2
C
16
D
8
4
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then

A
$$x f^{\prime}(x)+2024 f(x)=0$$
B
$$x f^{\prime}(x)-2023 f(x)=0$$
C
$$x f^{\prime}(x)-2024 f(x)=0$$
D
$$x f^{\prime}(x)+f(x)=2024$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12