1
JEE Main 2023 (Online) 29th January Evening Shift
+4
-1

Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that

$$f''(x)=g''(x)+6x$$

$$f'(1)=4g'(1)-3=9$$

$$f(2)=3g(2)=12$$.

Then which of the following is NOT true?

A
$$g(-2)-f(-2)=20$$
B
There exists $$x_0\in(1,3/2)$$ such that $$f(x_0)=g(x_0)$$
C
$$|f'(x)-g'(x)| < 6\Rightarrow -1 < x < 1$$
D
If $$-1 < x < 2$$, then $$|f(x)-g(x)| < 8$$
2
JEE Main 2023 (Online) 25th January Morning Shift
+4
-1

Let $$y(x) = (1 + x)(1 + {x^2})(1 + {x^4})(1 + {x^8})(1 + {x^{16}})$$. Then $$y' - y''$$ at $$x = - 1$$ is equal to

A
496
B
976
C
464
D
944
3
JEE Main 2023 (Online) 24th January Evening Shift
+4
-1

If $$f(x) = {x^3} - {x^2}f'(1) + xf''(2) - f'''(3),x \in \mathbb{R}$$, then

A
$$2f(0) - f(1) + f(3) = f(2)$$
B
$$f(1) + f(2) + f(3) = f(0)$$
C
$$f(3) - f(2) = f(1)$$
D
$$3f(1) + f(2) = f(3)$$
4
JEE Main 2022 (Online) 28th July Evening Shift
+4
-1

Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and

$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.

Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :

A
$$\frac{-2 \sqrt{2}}{3}$$
B
$$\frac{2}{3}$$
C
$$\frac{1}{3}$$
D
$$\frac{-2}{3}$$
EXAM MAP
Medical
NEET