1
JEE Main 2021 (Online) 26th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \cos \left( {2{{\tan }^{ - 1}}\sin \left( {{{\cot }^{ - 1}}\sqrt {{{1 - x} \over x}} } \right)} \right)$$, 0 < x < 1. Then :
A
$${(1 - x)^2}f'(x) - 2{(f(x))^2} = 0$$
B
$${(1 + x)^2}f'(x) + 2{(f(x))^2} = 0$$
C
$${(1 - x)^2}f'(x) + 2{(f(x))^2} = 0$$
D
$${(1 + x)^2}f'(x) - 2{(f(x))^2} = 0$$
2
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The derivative of
$${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$$ with
respect to $${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$$ at x = $${1 \over 2}$$ is :
A
$${{2\sqrt 3 } \over 3}$$
B
$${{2\sqrt 3 } \over 5}$$
C
$${{\sqrt 3 } \over {10}}$$
D
$${{\sqrt 3 } \over {12}}$$
3
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\left( {a + \sqrt 2 b\cos x} \right)\left( {a - \sqrt 2 b\cos y} \right) = {a^2} - {b^2}$$

where a > b > 0, then $${{dx} \over {dy}}\,\,at\left( {{\pi \over 4},{\pi \over 4}} \right)$$ is :
A
$${{a - 2b} \over {a + 2b}}$$
B
$${{a - b} \over {a + b}}$$
C
$${{a + b} \over {a - b}}$$
D
$${{2a + b} \over {2a - b}}$$
4
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If y2 + loge (cos2x) = y,
$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
A
|y''(0)| = 2
B
|y'(0)| + |y''(0)| = 3
C
y''(0) = 0
D
|y'(0)| + |y"(0)| = 1
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12