1
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and

$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.

Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :

A
$$\frac{-2 \sqrt{2}}{3}$$
B
$$\frac{2}{3}$$
C
$$\frac{1}{3}$$
D
$$ \frac{-2}{3}$$
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$$ at $$x=\frac{\pi}{4}$$ is

A
$$-2 \sqrt{2}$$
B
$$2 \sqrt{2}$$
C
$$-4$$
D
4
3
JEE Main 2022 (Online) 27th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $${\cos ^{ - 1}}\left( {{y \over 2}} \right) = {\log _e}{\left( {{x \over 5}} \right)^5},\,|y| < 2$$, then :

A
$${x^2}y'' + xy' - 25y = 0$$
B
$${x^2}y'' - xy' - 25y = 0$$
C
$${x^2}y'' - xy' + 25y = 0$$
D
$${x^2}y'' + xy' + 25y = 0$$
4
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : R $$\to$$ R be defined as $$f(x) = {x^3} + x - 5$$. If g(x) is a function such that $$f(g(x)) = x,\forall 'x' \in R$$, then g'(63) is equal to ________________.

A
$${1 \over {49}}$$
B
$${3 \over {49}}$$
C
$${43 \over {49}}$$
D
$${91 \over {49}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12