1
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
$${{{d^2}x} \over {d{y^2}}}$$ equals:
A
$$- {\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}{\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
B
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{}}{\left( {{{dy} \over {dx}}} \right)^{ - 2}}$$
C
$$- \left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
D
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}$$
2
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:\left( { - 1,1} \right) \to R$$ be a differentiable function with $$f\left( 0 \right) = - 1$$ and $$f'\left( 0 \right) = 1$$. Let $$g\left( x \right) = {\left[ {f\left( {2f\left( x \right) + 2} \right)} \right]^2}$$. Then $$g'\left( 0 \right) =$$
A
$$-4$$
B
$$0$$
C
$$-2$$
D
$$4$$
3
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Let $$y$$ be an implicit function of $$x$$ defined by $${x^{2x}} - 2{x^x}\cot \,y - 1 = 0$$. Then $$y'(1)$$ equals
A
$$1$$
B
$$\log \,2$$
C
$$-\log \,2$$
D
$$-1$$
4
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If $${x^m}.{y^n} = {\left( {x + y} \right)^{m + n}},$$ then $${{{dy} \over {dx}}}$$ is
A
$${y \over x}$$
B
$${{x + y} \over {xy}}$$
C
$$xy$$
D
$${x \over y}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12
© ExamGOAL 2024