1
AIEEE 2007
+4
-1
For the Hyperbola $${{{x^2}} \over {{{\cos }^2}\alpha }} - {{{y^2}} \over {{{\sin }^2}\alpha }} = 1$$ , which of the following remains constant when $$\alpha$$ varies$$=$$?
A
abscissae of vertices
B
abscissae of foci
C
eccentricity
D
directrix.
2
AIEEE 2007
+4
-1
Out of Syllabus
The normal to a curve at $$P(x,y)$$ meets the $$x$$-axis at $$G$$. If the distance of $$G$$ from the origin is twice the abscissa of $$P$$, then the curve is a :
A
circle
B
hyperbola
C
ellipse
D
parabola
3
AIEEE 2005
+4
-1
Out of Syllabus
The locus of a point $$P\left( {\alpha ,\beta } \right)$$ moving under the condition that the line $$y = \alpha x + \beta$$ is tangent to the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$ is :
A
an ellipse
B
a circle
C
a parabola
D
a hyperbola
4
AIEEE 2003
+4
-1
The foci of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over {{b^2}}} = 1$$ and the hyperbola $${{{x^2}} \over {144}} - {{{y^2}} \over {81}} = {1 \over {25}}$$ coincide. Then the value of $${b^2}$$ is :
A
$$9$$
B
$$1$$
C
$$5$$
D
$$7$$
EXAM MAP
Medical
NEET