For $\mathrm{t}>-1$, let $\alpha_{\mathrm{t}}$ and $\beta_{\mathrm{t}}$ be the roots of the equation
$$ \left((\mathrm{t}+2)^{1 / 7}-1\right) x^2+\left((\mathrm{t}+2)^{1 / 6}-1\right) x+\left((\mathrm{t}+2)^{1 / 21}-1\right)=0 \text {. If } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \alpha_{\mathrm{t}}=\mathrm{a} \text { and } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \beta_{\mathrm{t}}=\mathrm{b} \text {, } $$
then $72(a+b)^2$ is equal to ___________.
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of:
($ \mu_0 $ = Vacuum permeability and $ \epsilon_0 $ = Vacuum permittivity)
A photoemissive substance is illuminated with a radiation of wavelength $\lambda_i$ so that it releases electrons with de-Broglie wavelength $\lambda_e$. The longest wavelength of radiation that can emit photoelectron is $\lambda_o$. Expression for de-Broglie wavelength is given by:
(m: mass of the electron, h: Planck's constant and c: speed of light)