1
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
If the function $f(x)=\frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x}$ is continuous at $x=0$, then $f(0)$ is equal to ____________.
Your input ____
2
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
If $\int\left(\frac{1}{x}+\frac{1}{x^3}\right)\left(\sqrt[23]{3 x^{-24}+x^{-26}}\right) \mathrm{d} x=-\frac{\alpha}{3(\alpha+1)}\left(3 x^\beta+x^\gamma\right)^{\frac{\alpha+1}{\alpha}}+C, x>0,(\alpha, \beta, \gamma \in \mathbf{Z})$, where C is the constant of integration, then $\alpha+\beta+\gamma$ is equal to ___________.
Your input ____
3
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
Let the lengths of the transverse and conjugate axes of a hyperbola in standard form be $2 a$ and $2 b$, respectively, and one focus and the corresponding directrix of this hyperbola be $(-5,0)$ and $5 x+9=0$, respectively. If the product of the focal distances of a point $(\alpha, 2 \sqrt{5})$ on the hyperbola is $p$, then $4 p$ is equal to ___________.
Your input ____
4
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1

For $\mathrm{t}>-1$, let $\alpha_{\mathrm{t}}$ and $\beta_{\mathrm{t}}$ be the roots of the equation

$$ \left((\mathrm{t}+2)^{1 / 7}-1\right) x^2+\left((\mathrm{t}+2)^{1 / 6}-1\right) x+\left((\mathrm{t}+2)^{1 / 21}-1\right)=0 \text {. If } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \alpha_{\mathrm{t}}=\mathrm{a} \text { and } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \beta_{\mathrm{t}}=\mathrm{b} \text {, } $$

then $72(a+b)^2$ is equal to ___________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12