The number of real roots of the equation $x |x - 2| + 3|x - 3| + 1 = 0$ is :
Let the length of a latus rectum of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be 10. If its eccentricity is the minimum value of the function $f(t) = t^2 + t + \frac{11}{12}$, $t \in \mathbb{R}$, then $a^2 + b^2$ is equal to :
Let e1 and e2 be the eccentricities of the ellipse $\frac{x^2}{b^2} + \frac{y^2}{25} = 1$ and the hyperbola $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$, respectively. If b < 5 and e1e2 = 1, then the eccentricity of the ellipse having its axes along the coordinate axes and passing through all four foci (two of the ellipse and two of the hyperbola) is :
If the equation of the line passing through the point $ \left( 0, -\frac{1}{2}, 0 \right) $ and perpendicular to the lines $ \vec{r} = \lambda \left( \hat{i} + a\hat{j} + b\hat{k} \right) $ and $ \vec{r} = \left( \hat{i} - \hat{j} - 6\hat{k} \right) + \mu \left( -b \hat{i} + a\hat{j} + 5\hat{k} \right) $ is $ \frac{x-1}{-2} = \frac{y+4}{d} = \frac{z-c}{-4} $, then $ a+b+c+d $ is equal to :