1
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
Change Language
If $\int\left(\frac{1}{x}+\frac{1}{x^3}\right)\left(\sqrt[23]{3 x^{-24}+x^{-26}}\right) \mathrm{d} x=-\frac{\alpha}{3(\alpha+1)}\left(3 x^\beta+x^\gamma\right)^{\frac{\alpha+1}{\alpha}}+C, x>0,(\alpha, \beta, \gamma \in \mathbf{Z})$, where C is the constant of integration, then $\alpha+\beta+\gamma$ is equal to ___________.
Your input ____
2
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
Change Language
Let the lengths of the transverse and conjugate axes of a hyperbola in standard form be $2 a$ and $2 b$, respectively, and one focus and the corresponding directrix of this hyperbola be $(-5,0)$ and $5 x+9=0$, respectively. If the product of the focal distances of a point $(\alpha, 2 \sqrt{5})$ on the hyperbola is $p$, then $4 p$ is equal to ___________.
Your input ____
3
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
Change Language

For $\mathrm{t}>-1$, let $\alpha_{\mathrm{t}}$ and $\beta_{\mathrm{t}}$ be the roots of the equation

$$ \left((\mathrm{t}+2)^{1 / 7}-1\right) x^2+\left((\mathrm{t}+2)^{1 / 6}-1\right) x+\left((\mathrm{t}+2)^{1 / 21}-1\right)=0 \text {. If } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \alpha_{\mathrm{t}}=\mathrm{a} \text { and } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \beta_{\mathrm{t}}=\mathrm{b} \text {, } $$

then $72(a+b)^2$ is equal to ___________.

Your input ____
4
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of:

($ \mu_0 $ = Vacuum permeability and $ \epsilon_0 $ = Vacuum permittivity)

A

Voltage

B

Inductance

C

Resistance

D

Capacitance

JEE Main Papers
2023
2021
EXAM MAP