Let A = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : |$\alpha$ - 1| $\leq 4$ and |$\beta$ - 5| $\leq 6$ }
and B = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : 16($\alpha$ - $2)^2 $+ 9($\beta$ - $6)^2$ $\leq 144$ }.
Then
Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that
$ \frac{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}| - |\vec{a} - \vec{b}|} = \sqrt{2} + 1. $ Then $ \frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} $ is :
Let p be the number of all triangles that can be formed by joining the vertices of a regular polygon P of n sides and q be the number of all quadrilaterals that can be formed by joining the vertices of P. If p + q = 126, then the eccentricity of the ellipse $\frac{x^2}{16} + \frac{y^2}{n} = 1$ is :
Let a random variable X take values 0, 1, 2, 3 with P(X=0)=P(X=1)=p, P(X=2)=P(X=3) and E(X2)=2E(X). Then the value of 8p−1 is :