1
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of solutions of the equation

$ \cos 2\theta \cos \frac{\theta}{2} + \cos \frac{5\theta}{2} = 2\cos^3 \frac{5\theta}{2} $ in $ \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] $ is :

A

5

B

7

C

6

D

9

2
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider the lines L1: x - 1 = y - 2 = z and L2: x - 2 = y = z - 1. Let the feet of the perpendiculars from the point P(5, 1, -3) on the lines L1 and L2 be Q and R respectively. If the area of the triangle PQR is A, then 4A2 is equal to :

A

151

B

147

C

139

D

143

3
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let A = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : |$\alpha$ - 1| $\leq 4$ and |$\beta$ - 5| $\leq 6$ }

and B = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : 16($\alpha$ - $2)^2 $+ 9($\beta$ - $6)^2$ $\leq 144$ }.

Then

A

A $\subset$ B

B

B $\subset$ A

C

neither A $\subset$ B nor B $\subset$ A

D

$A \cup B=\{(x, y):-4 \leqslant x \leqslant 4,-1 \leqslant y \leqslant 11\}$

4
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that

$ \frac{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}| - |\vec{a} - \vec{b}|} = \sqrt{2} + 1. $ Then $ \frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} $ is :

A

2 + $\sqrt{2}$

B

2 + 4$\sqrt{2}$

C

4 + 2$\sqrt{2}$

D

1 + $\sqrt{2}$

JEE Main Papers
2023
2021
EXAM MAP