The number of solutions of the equation
$ \cos 2\theta \cos \frac{\theta}{2} + \cos \frac{5\theta}{2} = 2\cos^3 \frac{5\theta}{2} $ in $ \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] $ is :
Consider the lines L1: x - 1 = y - 2 = z and L2: x - 2 = y = z - 1. Let the feet of the perpendiculars from the point P(5, 1, -3) on the lines L1 and L2 be Q and R respectively. If the area of the triangle PQR is A, then 4A2 is equal to :
Let A = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : |$\alpha$ - 1| $\leq 4$ and |$\beta$ - 5| $\leq 6$ }
and B = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : 16($\alpha$ - $2)^2 $+ 9($\beta$ - $6)^2$ $\leq 144$ }.
Then
Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that
$ \frac{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}| - |\vec{a} - \vec{b}|} = \sqrt{2} + 1. $ Then $ \frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} $ is :