Let e1 and e2 be the eccentricities of the ellipse $\frac{x^2}{b^2} + \frac{y^2}{25} = 1$ and the hyperbola $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$, respectively. If b < 5 and e1e2 = 1, then the eccentricity of the ellipse having its axes along the coordinate axes and passing through all four foci (two of the ellipse and two of the hyperbola) is :
If the equation of the line passing through the point $ \left( 0, -\frac{1}{2}, 0 \right) $ and perpendicular to the lines $ \vec{r} = \lambda \left( \hat{i} + a\hat{j} + b\hat{k} \right) $ and $ \vec{r} = \left( \hat{i} - \hat{j} - 6\hat{k} \right) + \mu \left( -b \hat{i} + a\hat{j} + 5\hat{k} \right) $ is $ \frac{x-1}{-2} = \frac{y+4}{d} = \frac{z-c}{-4} $, then $ a+b+c+d $ is equal to :
If the sum of the second, fourth and sixth terms of a G.P. of positive terms is 21 and the sum of its eighth, tenth and twelfth terms is 15309, then the sum of its first nine terms is :
If the area of the region $ \{(x, y) : 1 + x^2 \leq y \leq \min \{x+7, 11-3x\}\} $ is $ A $, then $ 3A $ is equal to :