Let $a \in R$ and $A$ be a matrix of order $3 \times 3$ such that $\operatorname{det}(A)=-4$ and $A+I=\left[\begin{array}{lll}1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2\end{array}\right]$, where $I$ is the identity matrix of order $3 \times 3$. If $\operatorname{det}((a+1) \operatorname{adj}((a-1) A))$ is $2^{\mathrm{m}} 3^{\mathrm{n}}, \mathrm{m}$, $\mathrm{n} \in\{0,1,2, \ldots, 20\}$, then $\mathrm{m}+\mathrm{n}$ is equal to :
If $\theta \in[-2 \pi, 2 \pi]$, then the number of solutions of $2 \sqrt{2} \cos ^2 \theta+(2-\sqrt{6}) \cos \theta-\sqrt{3}=0$, is equal to:
If $S$ and $S^{\prime}$ are the foci of the ellipse $\frac{x^2}{18}+\frac{y^2}{9}=1$ and P be a point on the ellipse, then $\min \left(S P \cdot S^{\prime} P\right)+\max \left(S P \cdot S^{\prime} P\right)$ is equal to :
Let the focal chord PQ of the parabola $y^2=4 x$ make an angle of $60^{\circ}$ with the positive $x$ axis, where P lies in the first quadrant. If the circle, whose one diameter is PS, S being the focus of the parabola, touches the $y$-axis at the point $(0, \alpha)$, then $5 \alpha^2$ is equal to: