The largest $\mathrm{n} \in \mathbf{N}$ such that $3^{\mathrm{n}}$ divides 50 ! is :
Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$. If $\mathrm{P}_{10}=123, \mathrm{P}_9=76, \mathrm{P}_8=47$ and $\mathrm{P}_1=1$, then the quadratic equation having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is :
If $\overrightarrow{\mathrm{a}}$ is a nonzero vector such that its projections on the vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\overrightarrow{\mathrm{a}}$ is :
If the system of linear equations
$$ \begin{aligned} & 3 x+y+\beta z=3 \\ & 2 x+\alpha y-z=-3 \\ & x+2 y+z=4 \end{aligned} $$
has infinitely many solutions, then the value of $22 \beta-9 \alpha$ is :