1
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The largest $\mathrm{n} \in \mathbf{N}$ such that $3^{\mathrm{n}}$ divides 50 ! is :

A
22
B
20
C
21
D
23
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$. If $\mathrm{P}_{10}=123, \mathrm{P}_9=76, \mathrm{P}_8=47$ and $\mathrm{P}_1=1$, then the quadratic equation having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is :

A
$x^2+x-1=0$
B
$x^2-x+1=0$
C
$x^2+x+1=0$
D
$x^2-x-1=0$
3
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\overrightarrow{\mathrm{a}}$ is a nonzero vector such that its projections on the vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\overrightarrow{\mathrm{a}}$ is :

A
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}+5 \hat{k})$
B
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}-5 \hat{k})$
C
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}-5 \hat{k})$
D
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}+5 \hat{k})$
4
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the system of linear equations

$$ \begin{aligned} & 3 x+y+\beta z=3 \\ & 2 x+\alpha y-z=-3 \\ & x+2 y+z=4 \end{aligned} $$

has infinitely many solutions, then the value of $22 \beta-9 \alpha$ is :

A
31
B
37
C
43
D
49
JEE Main Papers
2023
2021
EXAM MAP