Consider the following equilibrium,
$$\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathrm{~g})$$
0.1 mol of CO along with a catalyst is present in a $2 \mathrm{dm}^3$ flask maintained at 500 K . Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of $\mathrm{CH}_3 \mathrm{OH}$ is formed. The $K_p^\theta$ is __________ $\times 10^{-3}$ (nearest integer).
Given : $\mathrm{R}=0.08 \mathrm{~dm}^3$ bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Assume only methanol is formed as the product and the system follows ideal gas behaviour.
A transition metal (M) among $\mathrm{Mn}, \mathrm{Cr}, \mathrm{Co}$ and Fe has the highest standard electrode potential $\left(\mathrm{M}^{3+} / \mathrm{M}^{2+}\right)$. It forms a metal complex of the type $\left[\mathrm{M}(\mathrm{CN})_6\right]^{4-}$. The number of electrons present in the $\mathrm{e}_{\mathrm{g}}$ orbital of the complex is ___________.
Let $\mathrm{A}=\left[\begin{array}{cc}\alpha & -1 \\ 6 & \beta\end{array}\right], \alpha>0$, such that $\operatorname{det}(\mathrm{A})=0$ and $\alpha+\beta=1$. If I denotes $2 \times 2$ identity matrix, then the matrix $(I+A)^8$ is :
Let the vertices Q and R of the triangle PQR lie on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}, \mathrm{QR}=5$ and the coordinates of the point $P$ be $(0,2,3)$. If the area of the triangle $P Q R$ is $\frac{m}{n}$ then :