Let $z$ be a complex number such that $|z|=1$. If $\frac{2+\mathrm{k}^2 z}{\mathrm{k}+\bar{z}}=\mathrm{k} z, \mathrm{k} \in \mathbf{R}$, then the maximum distance of $\mathrm{k}+i \mathrm{k}^2$ from the circle $|z-(1+2 i)|=1$ is :
Let one focus of the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of H , then $9\left(e^2+l\right)$ is equal to :
The largest $\mathrm{n} \in \mathbf{N}$ such that $3^{\mathrm{n}}$ divides 50 ! is :
Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$. If $\mathrm{P}_{10}=123, \mathrm{P}_9=76, \mathrm{P}_8=47$ and $\mathrm{P}_1=1$, then the quadratic equation having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is :