If $\theta \in[-2 \pi, 2 \pi]$, then the number of solutions of $2 \sqrt{2} \cos ^2 \theta+(2-\sqrt{6}) \cos \theta-\sqrt{3}=0$, is equal to:
If $S$ and $S^{\prime}$ are the foci of the ellipse $\frac{x^2}{18}+\frac{y^2}{9}=1$ and P be a point on the ellipse, then $\min \left(S P \cdot S^{\prime} P\right)+\max \left(S P \cdot S^{\prime} P\right)$ is equal to :
Let the focal chord PQ of the parabola $y^2=4 x$ make an angle of $60^{\circ}$ with the positive $x$ axis, where P lies in the first quadrant. If the circle, whose one diameter is PS, S being the focus of the parabola, touches the $y$-axis at the point $(0, \alpha)$, then $5 \alpha^2$ is equal to:
If the function $f(x)=2 x^3-9 a x^2+12 \mathrm{a}^2 x+1$, where $\mathrm{a}>0$, attains its local maximum and local minimum values at p and q , respectively, such that $\mathrm{p}^2=\mathrm{q}$, then $f(3)$ is equal to :