1
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the vertices Q and R of the triangle PQR lie on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}, \mathrm{QR}=5$ and the coordinates of the point $P$ be $(0,2,3)$. If the area of the triangle $P Q R$ is $\frac{m}{n}$ then :

A
$2 \mathrm{~m}-5 \sqrt{21} \mathrm{n}=0$
B
$\mathrm{m}-5 \sqrt{21} \mathrm{n}=0$
C
$5 \mathrm{~m}-21 \sqrt{2} \mathrm{n}=0$
D
$5 \mathrm{~m}-2 \sqrt{21} \mathrm{n}=0$
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $a \in R$ and $A$ be a matrix of order $3 \times 3$ such that $\operatorname{det}(A)=-4$ and $A+I=\left[\begin{array}{lll}1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2\end{array}\right]$, where $I$ is the identity matrix of order $3 \times 3$. If $\operatorname{det}((a+1) \operatorname{adj}((a-1) A))$ is $2^{\mathrm{m}} 3^{\mathrm{n}}, \mathrm{m}$, $\mathrm{n} \in\{0,1,2, \ldots, 20\}$, then $\mathrm{m}+\mathrm{n}$ is equal to :

A
14
B
17
C
15
D
16
3
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\theta \in[-2 \pi, 2 \pi]$, then the number of solutions of $2 \sqrt{2} \cos ^2 \theta+(2-\sqrt{6}) \cos \theta-\sqrt{3}=0$, is equal to:

A
8
B
6
C
10
D
12
4
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $S$ and $S^{\prime}$ are the foci of the ellipse $\frac{x^2}{18}+\frac{y^2}{9}=1$ and P be a point on the ellipse, then $\min \left(S P \cdot S^{\prime} P\right)+\max \left(S P \cdot S^{\prime} P\right)$ is equal to :

A
$3(6+\sqrt{2})$
B
$3(1+\sqrt{2})$
C
27
D
9
JEE Main Papers
2023
2021
EXAM MAP