Let the focal chord PQ of the parabola $y^2=4 x$ make an angle of $60^{\circ}$ with the positive $x$ axis, where P lies in the first quadrant. If the circle, whose one diameter is PS, S being the focus of the parabola, touches the $y$-axis at the point $(0, \alpha)$, then $5 \alpha^2$ is equal to:
If the function $f(x)=2 x^3-9 a x^2+12 \mathrm{a}^2 x+1$, where $\mathrm{a}>0$, attains its local maximum and local minimum values at p and q , respectively, such that $\mathrm{p}^2=\mathrm{q}$, then $f(3)$ is equal to :
Let $A B C D$ be a tetrahedron such that the edges $A B, A C$ and $A D$ are mutually perpendicular. Let the areas of the triangles $\mathrm{ABC}, \mathrm{ACD}$ and ADB be 5,6 and 7 square units respectively. Then the area (in square units) of the $\triangle B C D$ is equal to :
Let $z$ be a complex number such that $|z|=1$. If $\frac{2+\mathrm{k}^2 z}{\mathrm{k}+\bar{z}}=\mathrm{k} z, \mathrm{k} \in \mathbf{R}$, then the maximum distance of $\mathrm{k}+i \mathrm{k}^2$ from the circle $|z-(1+2 i)|=1$ is :