1
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

If $\overrightarrow{\mathrm{a}}$ is a nonzero vector such that its projections on the vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\overrightarrow{\mathrm{a}}$ is :

A
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}+5 \hat{k})$
B
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}-5 \hat{k})$
C
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}-5 \hat{k})$
D
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}+5 \hat{k})$
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

If the system of linear equations

$$ \begin{aligned} & 3 x+y+\beta z=3 \\ & 2 x+\alpha y-z=-3 \\ & x+2 y+z=4 \end{aligned} $$

has infinitely many solutions, then the value of $22 \beta-9 \alpha$ is :

A
31
B
37
C
43
D
49
3
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $(\sin x \cos y)(f(2 x+2 y)-f(2 x-2 y))=(\cos x \sin y)(f(2 x+2 y)+f(2 x-2 y))$, for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=\frac{1}{2}$, then the value of $24 f^{\prime \prime}\left(\frac{5 \pi}{3}\right)$ is :

A
2
B
3
C
$-$3
D
$-$2
4
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let A be the set of all functions $f: \mathbf{Z} \rightarrow \mathbf{Z}$ and R be a relation on A such that $\mathrm{R}=\{(\mathrm{f}, \mathrm{g}): f(0)=\mathrm{g}(1)$ and $f(1)=\mathrm{g}(0)\}$. Then R is :

A
Symmetric and transitive but not reflective
B
Symmetric but neither reflective nor transitive
C
Transitive but neither reflexive nor symmetric
D
Reflexive but neither symmetric nor transitive
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12