For $\alpha, \beta, \gamma \in \mathbf{R}$, if $\lim _\limits{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3$, then $\beta+\gamma-\alpha$ is equal to :
The term independent of $x$ in the expansion of $\left(\frac{(x+1)}{\left(x^{2 / 3}+1-x^{1 / 3}\right)}-\frac{(x-1)}{\left(x-x^{1 / 2}\right)}\right)^{10}, x>1$, is :
Let $a_1, a_2, a_3, \ldots$ be in an A.P. such that $\sum_\limits{k=1}^{12} a_{2 k-1}=-\frac{72}{5} a_1, a_1 \neq 0$. If $\sum_\limits{k=1}^n a_k=0$, then $n$ is:
Three distinct numbers are selected randomly from the set $\{1,2,3, \ldots, 40\}$. If the probability, that the selected numbers are in an increasing G.P., is $\frac{m}{n}, \operatorname{gcd}(m, n)=1$, then $m+n$ is equal to __________ .