1
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $f(x)=2 x^3-9 a x^2+12 \mathrm{a}^2 x+1$, where $\mathrm{a}>0$, attains its local maximum and local minimum values at p and q , respectively, such that $\mathrm{p}^2=\mathrm{q}$, then $f(3)$ is equal to :

A
55
B
37
C
10
D
23
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $A B C D$ be a tetrahedron such that the edges $A B, A C$ and $A D$ are mutually perpendicular. Let the areas of the triangles $\mathrm{ABC}, \mathrm{ACD}$ and ADB be 5,6 and 7 square units respectively. Then the area (in square units) of the $\triangle B C D$ is equal to :

A
$\sqrt{110}$
B
12
C
$\sqrt{340}$
D
$7 \sqrt{3}$
3
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $z$ be a complex number such that $|z|=1$. If $\frac{2+\mathrm{k}^2 z}{\mathrm{k}+\bar{z}}=\mathrm{k} z, \mathrm{k} \in \mathbf{R}$, then the maximum distance of $\mathrm{k}+i \mathrm{k}^2$ from the circle $|z-(1+2 i)|=1$ is :

A
$\sqrt{5}+1$
B
3
C
$\sqrt{3}+1$
D
2
4
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let one focus of the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of H , then $9\left(e^2+l\right)$ is equal to :

A
12
B
14
C
15
D
16
JEE Main Papers
2023
2021
EXAM MAP