1
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let one focus of the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of H , then $9\left(e^2+l\right)$ is equal to :

A
12
B
14
C
15
D
16
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The largest $\mathrm{n} \in \mathbf{N}$ such that $3^{\mathrm{n}}$ divides 50 ! is :

A
22
B
20
C
21
D
23
3
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$. If $\mathrm{P}_{10}=123, \mathrm{P}_9=76, \mathrm{P}_8=47$ and $\mathrm{P}_1=1$, then the quadratic equation having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is :

A
$x^2+x-1=0$
B
$x^2-x+1=0$
C
$x^2+x+1=0$
D
$x^2-x-1=0$
4
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\overrightarrow{\mathrm{a}}$ is a nonzero vector such that its projections on the vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\overrightarrow{\mathrm{a}}$ is :

A
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}+5 \hat{k})$
B
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}-5 \hat{k})$
C
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}-5 \hat{k})$
D
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}+5 \hat{k})$
JEE Main Papers
2023
2021
EXAM MAP