Let $B_1$ be the magnitude of magnetic field at center of a circular coil of radius $R$ carrying current I. Let $\mathrm{B}_2$ be the magnitude of magnetic field at an axial distance ' $x$ ' from the center. For $x: \mathrm{R}=3: 4, \frac{\mathrm{~B}_2}{\mathrm{~B}_1}$ is :
A light wave is propagating with plane wave fronts of the type $x+y+z=$ constant. Th angle made by the direction of wave propagation with the $x$-axis is :
Match List I with List II.
List - I | List - II | ||
---|---|---|---|
(A) | Coefficient of viscosity | (I) | $\left[\mathrm{ML}^0 \mathrm{~T}^{-3}\right]$ |
(B) | Intensity of wave | (II) | $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$ |
(C) | Pressure gradient | (III) | $\left[\mathrm{M}^{-1} \mathrm{LT}^2\right]$ |
(D) | Compressibility | (IV) | $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$ |
Choose the correct answer from the options given below:
A particle is subjected to two simple harmonic motions as : $$ x_1=\sqrt{7} \sin 5 \mathrm{tcm} $$ and $x_2=2 \sqrt{7} \sin \left(5 t+\frac{\pi}{3}\right) \mathrm{cm}$ where $x$ is displacement and $t$ is time in seconds. The maximum acceleration of the particle is $x \times 10^{-2} \mathrm{~ms}^{-2}$. The value of $x$ is :