1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow u = \widehat i + \widehat j,\,\overrightarrow v = \widehat i - \widehat j$$ and $$\overrightarrow w = \widehat i + 2\widehat j + 3\widehat k\,\,.$$ If $$\widehat n$$ is a unit vector such that $$\overrightarrow u .\widehat n = 0$$ and $$\overrightarrow v .\widehat n = 0\,\,,$$ then $$\left| {\overrightarrow w .\widehat n} \right|$$ is equal to :
A
$$3$$
B
$$0$$
C
$$1$$
D
$$2$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The vectors $$\overrightarrow {AB} = 3\widehat i + 4\widehat k\,\,\& \,\,\overrightarrow {AC} = 5\widehat i - 2\widehat j + 4\widehat k$$ are the sides of triangle $$ABC.$$ The length of the median through $$A$$ is :
A
$$\sqrt {288} $$
B
$$\sqrt {18} $$
C
$$\sqrt {72} $$
D
$$\sqrt {33} $$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The two lines $$x=ay+b,z=cy+d$$ and $$x = a'y + b',z = c'y + d'$$ will be perpendicular, if and only if :
A
$$aa' + cc' + 1 = 0$$
B
$$aa' + bb'cc' + 1 = 0$$
C
$$aa' + bb'cc' = 0$$
D
$$\left( {a + a'} \right)\left( {b + b'} \right) + \left( {c + c'} \right) = 0$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The lines $${{x - 2} \over 1} = {{y - 3} \over 1} = {{z - 4} \over { - k}}$$ and $${{x - 1} \over k} = {{y - 4} \over 2} = {{z - 5} \over 1}$$ are coplanar if :
A
$$k=3$$ or $$-2$$
B
$$k=0$$ or $$-1$$
C
$$k=1$$ or $$-1$$
D
$$k=0$$ or $$-3$$
JEE Main Papers
2023
2021
EXAM MAP