1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$f:R \to R$$ satisfies $$f$$(x + y) = $$f$$(x) + $$f$$(y), for all x, y $$ \in $$ R and $$f$$(1) = 7, then $$\sum\limits_{r = 1}^n {f\left( r \right)} $$ is
A
$${{7n\left( {n + 1} \right)} \over 2}$$
B
$${{7n} \over 2}$$
C
$${{7\left( {n + 1} \right)} \over 2}$$
D
$$7n + \left( {n + 1} \right)$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Domain of definition of the function f(x) = $${3 \over {4 - {x^2}}}$$ + $${\log _{10}}\left( {{x^3} - x} \right)$$, is
A
(-1, 0)$$ \cup $$(1, 2)$$ \cup $$(2, $$\infty $$)
B
(1, 2)
C
(-1, 0) $$ \cup $$ (1, 2)
D
(1, 2)$$ \cup $$(2, $$\infty $$)
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\mathop {\lim }\limits_{x \to 0} {{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)} \over x}$$ = k, the value of k is
A
$$ - {2 \over 3}$$
B
0
C
$$ - {1 \over 3}$$
D
$${2 \over 3}$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $$f(a) = g(a) = k$$ and their nth derivatives
$${f^n}(a)$$, $${g^n}(a)$$ exist and are not equal for some n. Further if

$$\mathop {\lim }\limits_{x \to a} {{f(a)g(x) - f(a) - g(a)f(x) + f(a)} \over {g(x) - f(x)}} = 4$$

then the value of k is
A
0
B
4
C
2
D
1
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12