1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The solution of the differential equation

$$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right){{dy} \over {dx}} = 0,$$ is :
A
$$x{e^{2{{\tan }^{ - 1}}y}} = {e^{{{\tan }^{ - 1}}y}} + k$$
B
$$\left( {x - 2} \right) = k{e^{2{{\tan }^{ - 1}}y}}$$
C
$$2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$
D
$$x{e^{{{\tan }^{ - 1}}y}} = {\tan ^{ - 1}}y + k$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The degree and order of the differential equation of the family of all parabolas whose axis is $$x$$-axis, are respectively.
A
$$2, 3$$
B
$$2,1$$
C
$$1,2$$
D
$$3,2.$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Events $$A, B, C$$ are mutually exclusive events such that $$P\left( A \right) = {{3x + 1} \over 3},$$ $$P\left( B \right) = {{1 - x} \over 4}$$ and $$P\left( C \right) = {{1 - 2x} \over 2}$$ The set of possible values of $$x$$ are in the interval.
A
$$\left[ {0,1} \right]$$
B
$$\left[ {{1 \over 3},{1 \over 2}} \right]$$
C
$$\left[ {{1 \over 3},{2 \over 3}} \right]$$
D
$$\left[ {{1 \
3},{13 \over 3}} \right]$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c = \overrightarrow c \times \overrightarrow a $$ then $$\overrightarrow a + \overrightarrow b + \overrightarrow c = $$
A
$$abc$$
B
$$-1$$
C
$$0$$
D
$$2$$
JEE Main Papers
2023
2021
EXAM MAP