1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
A tetrahedron has vertices at $$O(0,0,0), A(1,2,1) B(2,1,3)$$ and $$C(-1,1,2).$$ Then the angle between the faces $$OAB$$ and $$ABC$$ will be :
A
$${90^ \circ }$$
B
$${\cos ^{ - 1}}\left( {{{19} \over {35}}} \right)$$
C
$${\cos ^{ - 1}}\left( {{{17} \over {31}}} \right)$$
D
$${30^ \circ }$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and vectors $$\left( {1,a,{a^2}} \right),\,\,$$

$$\left( {1,b,{b^2}} \right)$$ and $$\left( {1,c,{c^2}} \right)\,$$ are non-coplanar, then the product $$abc$$ equals :
A
$$0$$
B
$$2$$
C
$$-1$$
D
$$1$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Consider points $$A, B, C$$ and $$D$$ with position

vectors $$7\widehat i - 4\widehat j + 7\widehat k,\widehat i - 6\widehat j + 10\widehat k, - \widehat i - 3\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 5\widehat k$$ respectively. Then $$ABCD$$ is a :
A
parallelogram but not a rhombus
B
square
C
rhombus
D
None
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $${Z_1}$$ and $${Z_2}$$ be two roots of the equation $${Z^2} + aZ + b = 0$$, Z being complex. Further , assume that the origin, $${Z_1}$$ and $${Z_2}$$ form an equilateral triangle. Then :
A
$${a^2} = 4b$$
B
$${a^2} = b$$
C
$${a^2} = 2b$$
D
$${a^2} = 3b$$
JEE Main Papers
2023
2021
EXAM MAP