1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
A tetrahedron has vertices at $$O(0,0,0), A(1,2,1) B(2,1,3)$$ and $$C(-1,1,2).$$ Then the angle between the faces $$OAB$$ and $$ABC$$ will be :
A
$${90^ \circ }$$
B
$${\cos ^{ - 1}}\left( {{{19} \over {35}}} \right)$$
C
$${\cos ^{ - 1}}\left( {{{17} \over {31}}} \right)$$
D
$${30^ \circ }$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and vectors $$\left( {1,a,{a^2}} \right),\,\,$$

$$\left( {1,b,{b^2}} \right)$$ and $$\left( {1,c,{c^2}} \right)\,$$ are non-coplanar, then the product $$abc$$ equals :
A
$$0$$
B
$$2$$
C
$$-1$$
D
$$1$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Consider points $$A, B, C$$ and $$D$$ with position

vectors $$7\widehat i - 4\widehat j + 7\widehat k,\widehat i - 6\widehat j + 10\widehat k, - \widehat i - 3\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 5\widehat k$$ respectively. Then $$ABCD$$ is a :
A
parallelogram but not a rhombus
B
square
C
rhombus
D
None
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $${Z_1}$$ and $${Z_2}$$ be two roots of the equation $${Z^2} + aZ + b = 0$$, Z being complex. Further , assume that the origin, $${Z_1}$$ and $${Z_2}$$ form an equilateral triangle. Then :
A
$${a^2} = 4b$$
B
$${a^2} = b$$
C
$${a^2} = 2b$$
D
$${a^2} = 3b$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12