The coordination environment of $$\mathrm{Ca}^{2+}$$ ion in its complex with $$\mathrm{EDTA}^{4-}$$ is :
Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The total number of geometrical isomers shown by $$[\mathrm{Co}(\mathrm{en})_2 \mathrm{Cl}_2]^{+}$$ complex ion is three.
Reason (R): $$[\mathrm{Co}(\mathrm{en})_2 \mathrm{Cl}_2]^{+}$$ complex ion has an octahedral geometry.
In the light of the above statements, choose the most appropriate answer from the options given below :
Match List I with List II
LIST I (Complex ion) |
LIST II (Spin only magnetic moment in B.M.) |
||
---|---|---|---|
A. | $$ \left[\mathrm{Cr}\left(\mathrm{NH}_3\right)_6\right]^{3+} $$ |
I. | 4.90 |
B. | $$ \left[\mathrm{NiCl}_4\right]^{2-} $$ |
II. | 3.87 |
C. | $$ \left[\mathrm{CoF}_6\right]^{3-} $$ |
III. | 0.0 |
D. | $$ \left[\mathrm{Ni}(\mathrm{CN})_4\right]^{2-} $$ |
IV. | 2.83 |
Choose the correct answer from the options given below :
Number of Complexes with even number of electrons in $$\mathrm{t_{2 g}}$$ orbitals is -
$$\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+},\left[\mathrm{Cu}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}$$