Resonance in $\mathrm{X}_2 \mathrm{Y}$ can be represented as
The enthalpy of formation of $X_2Y$ $ \left(X = X(g) + \frac{1}{2} Y = Y(g) \rightarrow X_2Y(g) \right) $ is 80 kJ mol$^{-1}$. The magnitude of resonance energy of $X_2Y$ is __ kJ mol$^{-1}$ (nearest integer value).
Given: Bond energies of $X \equiv X$, $X = X$, $Y = Y$ and $X = Y$ are 940, 410, 500, and 602 kJ mol$^{-1}$ respectively.
valence $X$: 3, $Y$: 2
A perfect gas ( 0.1 mol ) having $\overline{\mathrm{C}}_v=1.50 \mathrm{R}$ (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is $(-)$___________$J$ (nearest integer)
[Given: $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ ]

Given :
$$ \begin{aligned} & \left.\Delta \mathrm{H}^{\ominus}{ }_{\text {sub }}[\mathrm{C} \text { (graphite })\right]=710 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{C}-\mathrm{H}} \mathrm{H}^{\ominus}=414 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{H}-\mathrm{H}} \mathrm{H}^{\ominus}=436 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{C}}=\mathrm{C} \mathrm{H}^{\ominus}=611 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
The $\Delta \mathrm{H}_{\mathrm{f}} \ominus$ for $\mathrm{CH}_2=\mathrm{CH}_2$ is_________ $\mathrm{kJ} \mathrm{mol}^{-1}$ (nearest integer value)