1
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1

Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.

2
JEE Main 2023 (Online) 6th April Evening Shift
Numerical
+4
-1
Out of Syllabus

Let $$f(x)=\frac{x}{\left(1+x^{n}\right)^{\frac{1}{n}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n > 2$$.

If $$f^{n}(x)=\left(f \circ f \circ f \ldots .\right.$$. upto $$n$$ times) $$(x)$$, then

$$\lim _\limits{n \rightarrow \infty} \int_\limits{0}^{1} x^{n-2}\left(f^{n}(x)\right) d x$$ is equal to ____________.

3
JEE Main 2023 (Online) 1st February Evening Shift
Numerical
+4
-1

If $$\int\limits_0^\pi {{{{5^{\cos x}}(1 + \cos x\cos 3x + {{\cos }^2}x + {{\cos }^3}x\cos 3x)dx} \over {1 + {5^{\cos x}}}} = {{k\pi } \over {16}}}$$, then k is equal to _____________.

4
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1

If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.