1
JEE Main 2021 (Online) 16th March Morning Shift
Numerical
+4
-1
Change Language
Let f : R $$ \to $$ R be a continuous function such that f(x) + f(x + 1) = 2, for all x$$\in$$R.

If $${I_1} = \int\limits_0^8 {f(x)dx} $$ and $${I_2} = \int\limits_{ - 1}^3 {f(x)dx} $$, then the value of I1 + 2I2 is equal to ____________.
Your input ____
2
JEE Main 2021 (Online) 16th March Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language
Let f : (0, 2) $$ \to $$ R be defined as f(x) = log2$$\left( {1 + \tan \left( {{{\pi x} \over 4}} \right)} \right)$$. Then, $$\mathop {\lim }\limits_{n \to \infty } {2 \over n}\left( {f\left( {{1 \over n}} \right) + f\left( {{2 \over n}} \right) + ... + f(1)} \right)$$ is equal to ___________.
Your input ____
3
JEE Main 2021 (Online) 16th March Morning Shift
Numerical
+4
-1
Change Language
If the normal to the curve y(x) = $$\int\limits_0^x {(2{t^2} - 15t + 10)dt} $$ at a point (a, b) is parallel to the line x + 3y = $$-$$5, a > 1, then the value of | a + 6b | is equal to ___________.
Your input ____
4
JEE Main 2021 (Online) 26th February Evening Shift
Numerical
+4
-1
Change Language
If $${I_{m,n}} = \int\limits_0^1 {{x^{m - 1}}{{(1 - x)}^{n - 1}}dx} $$, for m, $$n \ge 1$$, and
$$\int\limits_0^1 {{{{x^{m - 1}} + {x^{n - 1}}} \over {{{(1 + x)}^{m + 1}}}}} dx = \alpha {I_{m,n}}\alpha \in R$$, then $$\alpha$$ equals ___________.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12