1
JEE Main 2022 (Online) 24th June Morning Shift
Numerical
+4
-1
Change Language

Let $$f(\theta ) = \sin \theta + \int\limits_{ - \pi /2}^{\pi /2} {(\sin \theta + t\cos \theta )f(t)dt} $$. Then the value of $$\left| {\int_0^{\pi /2} {f(\theta )d\theta } } \right|$$ is _____________.

Your input ____
2
JEE Main 2022 (Online) 24th June Morning Shift
Numerical
+4
-1
Change Language

Let $$\mathop {Max}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \alpha $$ and $$\mathop {Min}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \beta $$.

If $$\int\limits_{\beta - {8 \over 3}}^{2\alpha - 1} {Max\left\{ {{{9 - {x^2}} \over {5 - x}},x} \right\}dx = {\alpha _1} + {\alpha _2}{{\log }_e}\left( {{8 \over {15}}} \right)} $$ then $${\alpha _1} + {\alpha _2}$$ is equal to _____________.

Your input ____
3
JEE Main 2021 (Online) 31st August Morning Shift
Numerical
+4
-1
Change Language
Let [t] denote the greatest integer $$\le$$ t. Then the value of

$$8.\int\limits_{ - {1 \over 2}}^1 {([2x] + |x|)dx} $$ is ___________.
Your input ____
4
JEE Main 2021 (Online) 31st August Morning Shift
Numerical
+4
-1
Change Language
If $$x\phi (x) = \int\limits_5^x {(3{t^2} - 2\phi '(t))dt} $$, x > $$-$$2, and $$\phi$$(0) = 4, then $$\phi$$(2) is __________.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12