1
JEE Main 2023 (Online) 8th April Evening Shift
Numerical
+4
-1
Change Language

Let $$[t]$$ denote the greatest integer function. If $$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{5}$$, then $$\alpha+\beta+\gamma+\delta$$ is equal to __________.

Your input ____
2
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.

Your input ____
3
JEE Main 2023 (Online) 6th April Evening Shift
Numerical
+4
-1
Out of Syllabus
Change Language

Let $$f(x)=\frac{x}{\left(1+x^{n}\right)^{\frac{1}{n}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n > 2$$.

If $$f^{n}(x)=\left(f \circ f \circ f \ldots .\right.$$. upto $$n$$ times) $$(x)$$, then

$$\lim _\limits{n \rightarrow \infty} \int_\limits{0}^{1} x^{n-2}\left(f^{n}(x)\right) d x$$ is equal to ____________.

Your input ____
4
JEE Main 2023 (Online) 1st February Evening Shift
Numerical
+4
-1
Change Language

If $$\int\limits_0^\pi {{{{5^{\cos x}}(1 + \cos x\cos 3x + {{\cos }^2}x + {{\cos }^3}x\cos 3x)dx} \over {1 + {5^{\cos x}}}} = {{k\pi } \over {16}}} $$, then k is equal to _____________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12