For $$m, n > 0$$, let $$\alpha(m, n)=\int_\limits{0}^{2} t^{m}(1+3 t)^{n} d t$$. If $$11 \alpha(10,6)+18 \alpha(11,5)=p(14)^{6}$$, then $$p$$ is equal to ___________.
Let $$[t]$$ denote the greatest integer function. If $$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{5}$$, then $$\alpha+\beta+\gamma+\delta$$ is equal to __________.
Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.
Let $$f(x)=\frac{x}{\left(1+x^{n}\right)^{\frac{1}{n}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n > 2$$.
If $$f^{n}(x)=\left(f \circ f \circ f \ldots .\right.$$. upto $$n$$ times) $$(x)$$, then
$$\lim _\limits{n \rightarrow \infty} \int_\limits{0}^{1} x^{n-2}\left(f^{n}(x)\right) d x$$ is equal to ____________.