1
JEE Main 2024 (Online) 4th April Morning Shift
Numerical
+4
-1
Change Language

If the shortest distance between the lines $$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$ and $$\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$ is $$\frac{38}{3 \sqrt{5}} \mathrm{k}$$, and $$\int_\limits 0^{\mathrm{k}}\left[x^2\right] \mathrm{d} x=\alpha-\sqrt{\alpha}$$, where $$[x]$$ denotes the greatest integer function, then $$6 \alpha^3$$ is equal to _________.

Your input ____
2
JEE Main 2024 (Online) 4th April Morning Shift
Numerical
+4
-1
Change Language

If $$\int_0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} \mathrm{~d} x=\frac{1}{\mathrm{a}} \log _{\mathrm{e}}\left(\frac{\mathrm{a}}{3}\right)+\frac{\pi}{\mathrm{b} \sqrt{3}}$$, where $$\mathrm{a}, \mathrm{b} \in \mathrm{N}$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to _________.

Your input ____
3
JEE Main 2024 (Online) 1st February Evening Shift
Numerical
+4
-1
Change Language
Let $f:(0, \infty) \rightarrow \mathbf{R}$ and $\mathrm{F}(x)=\int\limits_0^x \mathrm{t} f(\mathrm{t}) \mathrm{dt}$. If $\mathrm{F}\left(x^2\right)=x^4+x^5$, then $\sum\limits_{\mathrm{r}=1}^{12} f\left(\mathrm{r}^2\right)$ is equal to ____________.
Your input ____
4
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
If $\int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\beta \log _{\mathrm{e}}(3+2 \sqrt{2})$, where $\alpha, \beta$ are integers, then $\alpha^2+\beta^2$ equals :
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12