Let $$f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\}$$ where [t] denotes the greatest integer $$\leq \mathrm{t}$$. Then $$\int\limits_{0}^{10} f(x) \mathrm{d} x+\int\limits_{0}^{10}(f(x))^{2} \mathrm{~d} x+\int\limits_{0}^{10}|f(x)| \mathrm{d} x$$ is equal to ________________.
Let f be a differentiable function satisfying $$f(x)=\frac{2}{\sqrt{3}} \int\limits_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2} x}{3}\right) \mathrm{d} \lambda, x>0$$ and $$f(1)=\sqrt{3}$$. If $$y=f(x)$$ passes through the point $$(\alpha, 6)$$, then $$\alpha$$ is equal to _____________.
If $$\mathrm{n}(2 \mathrm{n}+1) \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}} \mathrm{d} x=1177 \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}+1} \mathrm{~d} x$$, then $$\mathrm{n} \in \mathbf{N}$$ is equal to ______________.
Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}} + {e^{ - 2x}}} \right)\cos 2x + {2 \over a}x} $$, then $$(2 a+1)^{5}\, a^{2}$$ is equal to _______________.