1
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}} + {e^{ - 2x}}} \right)\cos 2x + {2 \over a}x} $$, then $$(2 a+1)^{5}\, a^{2}$$ is equal to _______________.

Your input ____
2
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

Let $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3} + \,\,.....\,\, + \,\,{{{x^{n - 1}}} \over n}} \right)dx} $$ for every n $$\in$$ N. Then the sum of all the elements of the set {n $$\in$$ N : an $$\in$$ (2, 30)} is ____________.

Your input ____
3
JEE Main 2022 (Online) 25th July Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language

$$ \begin{aligned} &\text { If } \lim _{n \rightarrow \infty} \frac{(n+1)^{k-1}}{n^{k+1}}[(n k+1)+(n k+2)+\ldots+(n k+n)] \\ &=33 \cdot \lim _{n \rightarrow \infty} \frac{1}{n^{k+1}} \cdot\left[1^{k}+2^{k}+3^{k}+\ldots+n^{k}\right] \end{aligned}$$, then the integral value of $$\mathrm{k}$$ is equal to _____________

Your input ____
4
JEE Main 2022 (Online) 30th June Morning Shift
Numerical
+4
-1
Change Language

Let $$f(t) = \int\limits_0^t {{e^{{x^3}}}\left( {{{{x^8}} \over {{{({x^6} + 2{x^3} + 2)}^2}}}} \right)dx} $$. If $$f(1) + f'(1) = \alpha e - {1 \over 6}$$, then the value of 150$$\alpha$$ is equal to ___________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12