1
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1 If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.

2
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1 Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t$$. If $$f(0)=e^{-2}$$, then $$2 f(0)-f(2)$$ is equal to ____________.

3
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1 Let $$A$$ be the area bounded by the curve $$y=x|x-3|$$, the $$x$$-axis and the ordinates $$x=-1$$ and $$x=2$$. Then $$12 A$$ is equal to ____________.

4
JEE Main 2023 (Online) 31st January Evening Shift
Numerical
+4
-1 Let $\mathrm{S}$ be the set of all $\mathrm{a} \in \mathrm{N}$ such that the area of the triangle formed by the tangent at the point $\mathrm{P}(\mathrm{b}$, c), b, c $\in \mathbb{N}$, on the parabola $y^{2}=2 \mathrm{a} x$ and the lines $x=\mathrm{b}, y=0$ is $16$ unit2, then $\sum\limits_{\mathrm{a} \in \mathrm{S}} \mathrm{a}$ is equal to
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination