If $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$$, where $$\alpha, \beta$$ and $$\gamma$$ are rational numbers, then $$3 \alpha+4 \beta-\gamma$$ is equal to _________.
Let $$f(x)=\int_\limits0^x g(t) \log _{\mathrm{e}}\left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}$$, where $$g$$ is a continuous odd function. If $$\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+\mathrm{e}^x}\right) \mathrm{d} x=\left(\frac{\pi}{\alpha}\right)^2-\alpha$$, then $$\alpha$$ is equal to _________.
Let $$f_{n}=\int_\limits{0}^{\frac{\pi}{2}}\left(\sum_\limits{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_\limits{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \cos x d x, n \in \mathbb{N}$$. Then $$f_{21}-f_{20}$$ is equal to _________
Let for $$x \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$$, where
$$C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2,3, \ldots$$ Then $$S_{2}(3)+6 C_{3}$$ is equal to ____________.