1
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let xk + yk = ak, (a, k > 0 ) and $${{dy} \over {dx}} + {\left( {{y \over x}} \right)^{{1 \over 3}}} = 0$$, then k is:
A
$${1 \over 3}$$
B
$${2 \over 3}$$
C
$${4 \over 3}$$
D
$${3 \over 2}$$
2
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The derivative of $${\tan ^{ - 1}}\left( {{{\sin x - \cos x} \over {\sin x + \cos x}}} \right)$$, with respect to $${x \over 2}$$ , where $$\left( {x \in \left( {0,{\pi \over 2}} \right)} \right)$$ is :
A
1
B
2
C
$${2 \over 3}$$
D
$${1 \over 2}$$
3
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If ey + xy = e, the ordered pair $$\left( {{{dy} \over {dx}},{{{d^2}y} \over {d{x^2}}}} \right)$$ at x = 0 is equal to :
A
$$\left( {{1 \over e}, - {1 \over {{e^2}}}} \right)$$
B
$$\left( { - {1 \over e},{1 \over {{e^2}}}} \right)$$
C
$$\left( { - {1 \over e}, - {1 \over {{e^2}}}} \right)$$
D
$$\left( {{1 \over e},{1 \over {{e^2}}}} \right)$$
4
JEE Main 2019 (Online) 10th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) = loge(sin x), (0 < x < $$\pi $$) and g(x) = sin–1 (e–x ), (x $$ \ge $$ 0). If $$\alpha $$ is a positive real number such that a = (fog)'($$\alpha $$) and b = (fog)($$\alpha $$), then :
A
a$$\alpha $$2 + b$$\alpha $$ - a = -2$$\alpha $$2
B
a$$\alpha $$2 + b$$\alpha $$ + a = 0
C
a$$\alpha $$2 - b$$\alpha $$ - a = 0
D
a$$\alpha $$2 - b$$\alpha $$ - a = 1
JEE Main Subjects
EXAM MAP