1
JEE Main 2021 (Online) 25th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral
$$\int {{{\sin \theta .\sin 2\theta ({{\sin }^6}\theta + {{\sin }^4}\theta + {{\sin }^2}\theta )\sqrt {2{{\sin }^4}\theta + 3{{\sin }^2}\theta + 6} } \over {1 - \cos 2\theta }}} \,d\theta $$ is :
A
$${1 \over {18}}{\left[ {9 - 2{{\cos }^6}\theta - 3{{\cos }^4}\theta - 6{{\cos }^2}\theta } \right]^{{3 \over 2}}} + c$$
B
$${1 \over {18}}{\left[ {11 - 18{{\sin }^2}\theta + 9{{\sin }^4}\theta - 2{{\sin }^6}\theta } \right]^{{3 \over 2}}} + c$$
C
$${1 \over {18}}{\left[ {11 - 18{{\cos }^2}\theta + 9{{\cos }^4}\theta - 2{{\cos }^6}\theta } \right]^{{3 \over 2}}} + c$$
D
$${1 \over {18}}{\left[ {9 - 2{{\sin }^6}\theta - 3{{\sin }^4}\theta - 6{{\sin }^2}\theta } \right]^{{3 \over 2}}} + c$$
2
JEE Main 2021 (Online) 24th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\int {{{\cos x - \sin x} \over {\sqrt {8 - \sin 2x} }}} dx = a{\sin ^{ - 1}}\left( {{{\sin x + \cos x} \over b}} \right) + c$$, where c is a constant of integration, then the ordered pair (a, b) is equal to :
A
(-1, 3)
B
(1, 3)
C
(1, -3)
D
(3, 1)
3
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If
$$\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $$ = A$${\log _e}\left| {B\left( \theta \right)} \right| + C$$,

where C is a constant of integration, then $${{{B\left( \theta \right)} \over A}}$$
can be :
A
$${{2\sin \theta + 1} \over {5\left( {\sin \theta + 3} \right)}}$$
B
$${{2\sin \theta + 1} \over {\sin \theta + 3}}$$
C
$${{5\left( {2\sin \theta + 1} \right)} \over {\sin \theta + 3}}$$
D
$${{5\left( {\sin \theta + 3} \right)} \over {2\sin \theta + 1}}$$
4
JEE Main 2020 (Online) 5th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If
$$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $$ = $$g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$$

where c is a constant of integration, then g(0) is equal to :
A
1
B
2
C
e
D
e2
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12